Kommission für Astronomie Österreichische Akademie der Wissenschaften

kommission für ASTRONOMIE

Richarden: Inteligenteö Roboter zur Ostelling unseres Sonnensystems

Helmut O. Rucker Graz in Space 2014

ptember 2014

Kommission für Astronomie erreichische Akademie der Wissenschaften

Raumsonden: š Intelligenteõ Roboter zur Erforschung unseres Sonnensystems

Helmut O. Rucker Graz in Space 2014

TITTITI

4.September 2014

Kommission für Astronomie Österreichische Akademie der Wissenschaften

Raumsonden: š Intelligenteő Roboter zur Erforschung unseres Somnensystems

Helmut O. Rucker Graz in Space 2014

4.September 2014

Raumsonde Cassini-Huygens zur Erforschung des Saturn-Systems

Startgewicht

5712 kg

Der sHerr der Ringe‰im sGegenlicht‰

Speichen im Ringsystem

Saturnmond lapetus

Cassini Imaging Science Subsystem

Komponenten :

Kamera	Sensoren	Field of View	Bereich	Filter
Narrow-angle reflektor	1024x1024 CCD Felder	0.35°	200-1100 nm	24 🗲
Wide-angle refraktor	1024x1024 CCD Felder	3.5°	380-1100 nm	18

> 3 Milliarden USD

> 3000 Wissenschaftler und Ingenieure

30 Jahre Projekt- und Missionsdauer

Annäherung an Saturn

V 18.3 km/s

Phoebe 11.Juni 2004 Vorbeiflug-Distanz 2000 km Phoebe-Durchmesser ca. 220 km

1.Juli 2004 m Durchquerung der Ringebene

Spectator View 0 Days -1 Hrs -59 Min: Cassini Saturn Orbit Insertion

sStern sZeta Orionis%binter der Wasserfontäne von Enceladus

Cassini flyby distance to Enceladus

Rev 3: March 9, 2005, 1,264 km Rev 4: March 9, 2005, 500 km Rev 11: July 14, 2005, 168 km Rev 61: March 12, 2008, 52 km Rev 80: August 11, 2008, 54 km Rev 88: October 9, 2008, 25 km Rev 120: November 2, 2009, 103 km Rev 121: November 21, 2009, 1,607 km Rev 130: April 28, 2010, 103 km Rev. 131: May 18, 2010, 201 km Credit: NASA/ JPL/SSI/ John Spencer

Hyperion

Bruchstück einer dramatischen Kollision ?

Titan,

größter Mond im Saturnsystem

(nur geringfügig kleiner als der Jupiter-Mond Ganymed als größter Mond im Sonnensystem)

Äquatorialer Radius Distanz zu Saturn Durchschnittl. Dichte 2,575 km ~20 Rs 1.88 g/cm^3

Rotationsperiode Orbitalperiode 15.94542 Tage 15.94542 Tage

Durchschnittl. Oberflächentemperatur -178°C Oberflächen-Atmosphärendruck 1.5 bar

Neben der Erde der einzige Himmelskörper im Sonnensystem mit Regen

Flüssiges Methan führt zu Tropfengröße von ~ 1 cm Durchmesser (Erde ca. 6 mm)

Tropfen-Fallgeschwindigkeit ~1.6 m/s (Erde ca. 10 m/s)

Hydrologischer Zyklus: Regenmenge ~ 10 mm/Èrdenjahr (Erde ca. 1000 mm/Jahr) Film über die Huygens-Landung auf in der Mittagspause sHuygens%erblickt die Titan-Oberfläche

ritar

Radiostrahlung Magnetfeld (magn. Induktion B) (EM-Welle mit Frequenz f) Plasma (Masse m)

Electron-Zyklotron Bewegung

Fundamentale Eigenschaft der planetaren Radiostrahlung:

Nicht-thermische Radio-Emission wird generiert als Emission von gyrierenden Elektronen in hohen Breiten magnetischer Planeten.

 $f \approx f_{ce}$

 $f_{ce} = \frac{1}{2\pi} \frac{eB}{m_e}$

Electron-Zyklotron Bewegung

Fundamentale Eigenschaft der planetaren Radiostrahlung:

Nicht-thermische Radio-Emission wird generiert als Emission von gyrierenden Elektronen in hohen Breiten magnetischer Planeten.

Modell der Strahlungshohlkegel

Jupiter Radiostrahlung: Cassini RPWS am 18. September 2000

Größe/Radius: ~71.400 km (11 Re) Umlaufzeit um die Sonne: ~12 Jahre Umdrehung: 9 hr 55 min 29.7 s

Rotationsperiode aus der Messung der Jupiter Radiostrahlung bestimmbar.

Beobachtung / Messung im optischen Bereich

0

Plate 1a. *Above*: The colorful surface of lo near Ra Paterna, an equatorial volcanic feature at longitude 320°. Width of area shown is nearly 1000 km. Voyager 1 photograph: JPL P-21277C.

Plate 1b. Left: The color of elemental sulfur at various temperatures (see Chapter 7). Photograph courtesy of B. Meyer, Lawrence Berkeley Laboratory, University of California. Beobachtung / Messung im optischen Bereich

Activer Vulkanismus auf Io

Io — Tvashtar Catena

125 (26 Nov 1999)

+ C21 low-resolution color + fire fountain sketch

127 (22 Feb 2000)

visible wavelength data + IR data of active lava flow

Modell der NASA Raumsonde STEREO

Rheometrie

Maßstabgetreues Modell des gesamten Systems Raumsonde-Antennen (1:30).

Messung der induzierten Spannungen in Abhängigkeit von der Lage des Modells relativ zum elektrischen Feld.

Bestimmung der effektiven Antennenachsen und die effektiven Antennenlängen.

STEREO Mission Start 25.Oktober 2006

Bitte die 3D Brille verwenden !

STEREO Mission Start 25.Oktober 2006

Bitte die 3D Brille verwenden !

NASA / STEREO-A, -B

Bitte die 3D Brille verwenden !

Nördliche Polkappe ist einige km dick, vielleicht das größte Wasserreservoir auf Mars.

MARSIS Radar experiment Nordpol: pures Wassereis

458 km →

2.1 Instrumentenaufbau, -funktion

Instrumentenaufbau:

High Resolution Stereo Camera (HRSC) von Mars Express

Stereo-Kamera HRSC (1)

Die Auflösung beträgt 10 m/Pixel aus einer Höhe von 250 km.

Hochauflösendes Objektiv SRC (2)

Teleobjektiv; Die maximale Auflösung beträgt 2.3 m/Pixel.

Instrumentenrahmen (3)

Dies ist das Gehäuse für die HRSC und die SRC und sorgt für thermische Entkopplung von der Sonde und mechanische Stabilität.

Digitale Einheit (4)

- Camera Control Processor (CCP)
- Data Compression Electronics (DCE)
- Interface Electronics (IFE)
- Power Supply Subsystem (PSS)
- Heater Control Electronics (HCE)

Valles Marineris Östlicher Teil des Canyon-Systems Höhendifferenz zwischen Talgrund und Geländeoberkante: 9,92 km

Å und zum Abschluss ein Blick in die Nordabstürze des Valles Marineris. Bitte 3D Brille nehmen !

Bitte die 3D Brille verwenden !

