

Viele Punkte ergeben ein Bild: Weltraumbeobachtungen mit mehreren Satelliten

Ferdinand Plaschke

Institut für Weltraumforschung, Graz Österreichische Akademie der Wissenschaften

der erdnahe Weltraum...

der erdnahe Weltraum...

der erdnahe Weltraum...

- Die Magnetosphäre besteht aus eine Vielzahl von Regionen mit unterschiedlichen Eigenschaften.
- Wechselwirkungen vermittelt durch: Teilchen, Ströme, Felder, Wellen

Unser Ziel ist die Untersuchung dieser Wechselwirkungen.
Reichen dafür Messungen mit einzelnen Satelliten?

Zeitliche Veränderungen in Messdaten können unterschiedlich interpretiert werden:

Zeitliche Veränderungen in Messdaten können unterschiedlich interpretiert werden:

Zeitliche Veränderungen können von räumlichen Veränderungen mit Einzelsatelliten-Messungen nicht unterschieden werden.

- Einordnung globaler Zusammenhänge
- Bewegung von Grenzflächen, Ausbreitung von Wellen
- Messung von Strömen

Einordnung von Messungen

Einordnung von Messungen

http://www.nasa.gov/mission_pages/themis/multimedia/index.html

http://www.nasa.gov/mission_pages/themis/multimedia/index.html

THEMIS: Time History of Events and Macroscale Interactions during Substorms

http://themis.ssl.berkeley.edu

THEMIS: Time History of Events and Macroscale Interactions during Substorms

http://cse.ssl.berkeley.edu/artemis/videos/

THEMIS: Time History of Events and Macroscale Interactions during Substorms

Event	Observed time (UT)	Inferred delay (seconds since 04:50:03 UT)
Reconnection onset	04:50:03 (inferred)	$T_{\rm Rx} = 0$
Reconnection effects at P1	04:50:28	25
Reconnection effects at P2	04:50:38	35
Auroral intensification	04:51:39	$T_{\rm AI} = 96$
High-latitude Pi2 onset	04:52:00	117
Substorm expansion onset	04:52:21	$T_{\rm EX} = 138$
Earthward flow onset at P3	04:52:27	144
Mid-latitude Pi2 onset	04:53:05	182
Dipolarization at P3	04:53:05	$T_{\rm CD} = 182$
Auroral electroject increase	04:54:00	237

aus Angelopoulos et al., 2008

THEMIS: Time History of Events and Macroscale Interactions during Substorms

Event	Observed time (UT)	Inferred delay (seconds since 04:50:03 UT)
Reconnection onset	04:50:03 (inferred)	$T_{\rm Rx} = 0$
Reconnection effects at P1	04:50:28	25
Reconnection effects at P2	04:50:38	35
Auroral intensification	04:51:39	$T_{\rm AI} = 96$
High-latitude Pi2 onset	04:52:00	117
Substorm expansion onset	04:52:21	$T_{\rm EX} = 138$
Earthward flow onset at P3	04:52:27	144
Mid-latitude Pi2 onset	04:53:05	182
Dipolarization at P3	04:53:05	$T_{\rm CD} = 182$
Auroral electroject increase	04:54:00	237

Grenzflächenbewegung

Kann man die Geschwindigkeit eines Autos mit nur einer Lichtschranke bestimmen?

1D Bewegung, Normalenrichtung bekannt, 2 Satelliten

2D Bewegung, Fläche bekannt, 3 Satelliten

3D Bewegung, 4 Satelliten

THEMIS Satelliten nach dem Start: aufgereiht entlang ihres gemeinsamen Orbits (Perlenketten-Konfiguration)

THEMIS Satelliten nach dem Start: aufgereiht entlang ihres gemeinsamen Orbits (Perlenketten-Konfiguration)

35

30

25

20

15

10

5

0

0

2

MP Schwingungen: Frequenz [mHz]

Anzahl Bestimmungen

ESA Mission 4 Satelliten in Tetraeder-Konfiguration

http://de.wikipedia.org/wiki/Tetraeder

http://www.esa.int/spaceinimages/Images/2002/08/The_Cluster_constellation

Wellenteleskop

Cluster als Wellenteleskop, phasengesteuerte Gruppenantenne

Autor: Spliced, http://de.wikipedia.org/wiki/RAF_Fylingdales

http://www.tf.uni-kiel.de/matwis/amat/ mw1_ge/kap_2/basics/b2_1_6.html

Cluster als Wellenteleskop, phasengesteuerte Gruppenantenne

http://www.tf.uni-kiel.de/matwis/amat/ mw1_ge/kap_2/basics/b2_1_6.html

Autor: Spliced, http://de.wikipedia.org/wiki/RAF_Fylingdales

nach Narita und Glassmeier, 2006

F. Plaschke: Viele Punkte ergeben ein Bild: Weltraumbeobachtungen mit mehreren Satelliten

2

Ampèresches Gesetz:

$$\mu_0 \vec{j} = \operatorname{rot} \vec{B}$$
$$\mu_0 \int_A \vec{j} \cdot \mathrm{d} \vec{A} = \int_{(A)} \vec{B} \cdot \mathrm{d} \vec{S}$$

Curlometer – Strommessgerät

Ampèresches Gesetz:

$$\mu_0 \vec{j} = \operatorname{rot} \vec{B}$$
$$\mu_0 \int_A \vec{j} \cdot \mathrm{d} \vec{A} = \int_{(A)} \vec{B} \cdot \mathrm{d} \vec{S}$$

http://www.nasa.gov/mission_pages/themis/multimedia/index.html

MMS – Magnetospheric MultiScale

http://mms.gsfc.nasa.gov

- NASA Mission, 4 Satelliten
- Abstände von ~10 km
- Start: März 2015
- Wie funktioniert Rekonnexion?

Neues Kapitel bei Graz in Space...

http://mms.gsfc.nasa.gov/mms_spacecraft

Neues Kapitel bei Graz in Space...

http://mms.gsfc.nasa.gov/mms_spacecraft

	- Th	
	3	
		mm
		5.5
	5	
4.0 mm		*
	4	

FPI	= Fast Plasma Instrument
DIS	= Dual Ion Sensors
DES	= Dual Electron Sensors
HPCA	= Hot Plasma Composition Analyzer
ASPOC	= Active Spacecraft Potential
	Control Device
FEEPS	= Fly's Eye Energetic Particle Sensor
EIS	= Energetic Ion Spectrometer
EDI	= Electron Drift Instrument
GDU	= Gun Detector Unit
SDP	= Spin-plane Double Probe
ADP	= Axial Double Probe
AFG	= Analog Fluxgate Magnetometer
DFG	= Digital Fluxgate Magnetometer
SCM	= Search Coil Magnetometer
	-

nach Russell et al., 2014

http://cse.ssl.berkeley.edu/artemis/videos/themis_launch.mp4

