

Monitoring der globalen Erwärmung mit GPS Satellitensignalen

A. K. Steiner¹, B. C. Lackner¹, F. Ladstädter¹, B. Scherllin-Pirscher¹, U. Foelsche¹, G. C. Hegerl² und G. Kirchengast¹

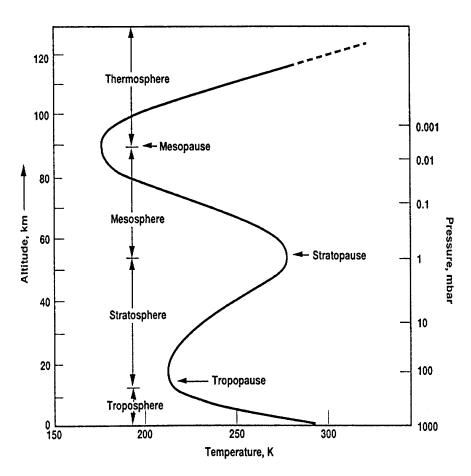
(1) Wegener Zentrum für Klima und Globalen Wandel (WEGC) und Institutsbereich Geophysik, Astrophysik, und Meteorologie/Inst. für Physik (IGAM/IP), Karl-Franzens-Universität Graz, Österreich

(2) University of Edinburgh, School of GeoSciences, Edinburgh, U.K.

andi.steiner@uni-graz.at

Graz in Space 2012, IWF Graz, Österreich, 6. September 2012

Überblick



- Aufbau und Klimaänderung der Atmosphäre
- Beobachtungsmethoden und Datensätze
- GPS Radio-Okkultation (RO)
- Von der Messung zu Klimavariablen
- Eigenschaften von GPS RO Daten
- Klimatrendstudien

1

Struktur der Atmosphäre

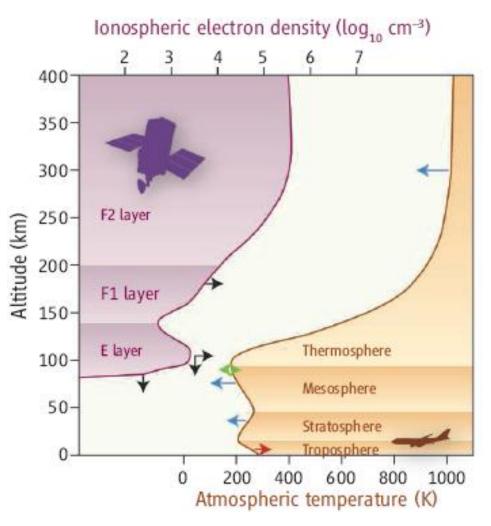
Vertical temperature profile (Source: Melbourne et al. (1994) adapted by Kehrer et al. (2008))

Vertikale thermische Struktur

Troposphäre

bis 8 km am Pol und 18 km in Tropen Temperaturabnahme bis –50°C Wolken-, Niederschlagsbildung Vertikale Durchmischung, Strahlungsprozesse

- Stratosphäre bis ~50 km, ~ 0°C
 Temperaturanstieg mit der Höhe
 Ozonschicht, O3 absorbiert UV-Strahlung
- Mesosphäre bis ~85 km, –90°C bis hier gut durchmischte Luft


Thermosphäre

Temperaturanstieg (~1000 K), 400 km konst. Absorption kw UV-Strahlung – Ionisation **Ionosphäre**

Geringe Dichte, Diffusion, Gasentmischung Große Temperaturschwankungen,keine "fühlbare" Temperatur

Klimaänderung in der Atmosphäre

Lastovicka et al., Science, 2006

- Erdoberfläche Erwärmung
- Untere mittlere Atmosphäre
 Erwärmung der Troposphäre
 Abkühlung der Stratosphäre
- Obere Atmosphäre
 wenig Daten vorhanden,
 Abkühlung um einige °C/Dekade
 Dichteabnahme in Thermosphäre
 aufgrund der Abkühlung
 - Hauptursache: Treibhausgase
 Anstieg der Kohlendioxidkonzentration
 Abnahme der Ozonkonzentration
 Anstieg von Wasserdampf
 Natürliche Ursachen:
 Schwankungen der Sonnenaktivität

- 45 km

Troposphäre - Stratosphäre

-40 km

- 35 km

- 30 km

Weather balloon 25 km

Ozone Layer

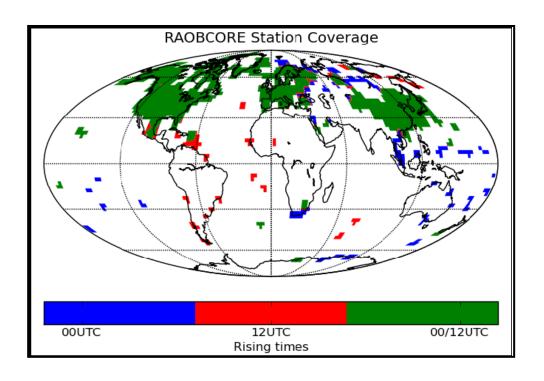
-20 km

- 15 km

tti kin Commercial aircraft

Klimabeobachtung in der Atmosphäre

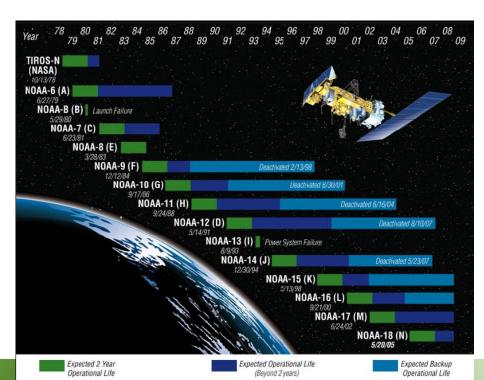
Klimadaten – Atmosphäre

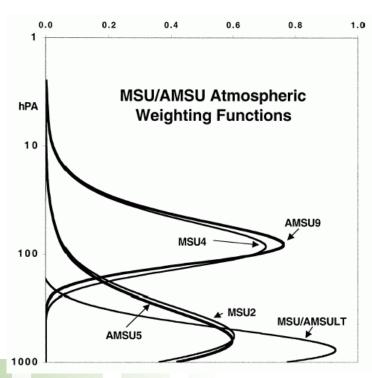

- Klimamodeldaten
- Reanalyse Daten (Model + Beobachtungen)
- Beobachtungsdaten
 - Radiosondenmessungen (Wetterballone)
 - Satellitenbasierte Messungen, z.B.: Mikrowellensondierung
 GPS Radio-Okkultation

Radiosondenmessungen

Radiosonden

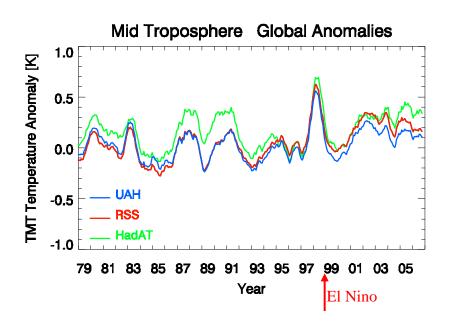
- Seit 1958 zur Wetterbeobachtung
- Inhomogene Verteilung, mehr Stationen auf Kontinenten, Nordhemisphäre
- systematische Fehler (Aufheizung des Sensors bei Tag)
- Fehler wegen Stationsänderungen, versch. Instrumententypen

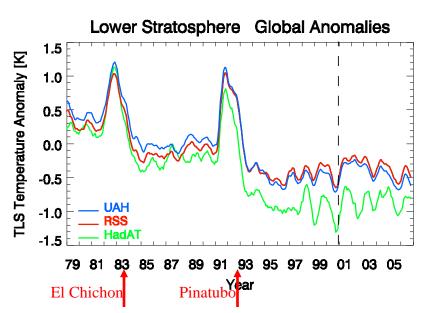



Satelliten-basierte Mikrowellensondierung

(Advanced) Microwave Sounding Unit – (A)MSU

- Passiver Mikrowellensensor seit 1979 zur Wetterbeobachtung
- misst die Erdabstrahlung im MW-Bereich (50–60 GHz Sauerstoff Absorption)
- Grobe vertikale Auflösung (Schichttemperaturen in der Tropo- und Stratosphäre)
- Gute globale horizontale Bedeckung
- Für die Erstellung von Klimazeitreihen müssen die Daten verschiedener Satelliten kalibriert/korrigiert werden (z.B.: wegen Satellitendrift)




Atmosphäre – Temperaturzeitreihen

Erwärmung der Troposphäre

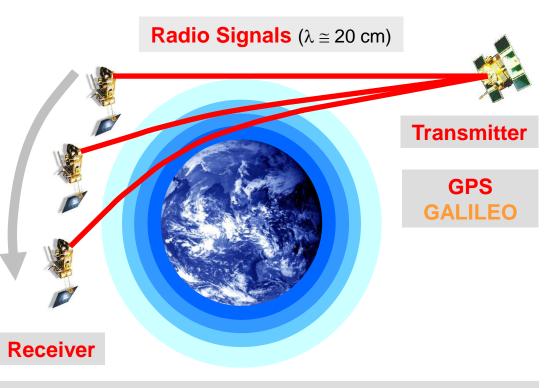
Abkühlung der Stratosphäre

Probleme

- Interkalibrierung und Homogenisierung notwendig für Klimazeitreihen bei Radiosonden und (A)MSU Daten
- Prinzipielle Übereinstimmung von Trendwerten, aber große Ungenauigkeiten
- Neue, genauere Datensätze erfordert

Referenz: Karl et al., CCSP Rep., 2006

Okkultation



Solar Occultation by the Earth's Atmosphere (courtesy D. Pivato)

GPS Radio-Okkultation

GNSS-LEO Satellitenkonstellation

- **Satellite in Low Earth Orbit:**
- **GPS/MET, CHAMP, SAC-C, GRACE,**Formosat-3/COSMIC, MetOp, Oceansat-2 ...

Courtesy: U. Foelsche

- Radio-Okkultationsbeobachtungen
- mittels Atmosphärensondierung
- Brechung des EM Radiosignals entlang des Strahlweges
- Messung des Phasenwegs durch die Atmosphäre
- Berechnung von atmosphärischen Klimaparametern: Refraktivität, Dichte, geopotentieller Höhe (Höhe konst. Druckflächen), Temperatur, Feuchte

Global Navigation Satellite Systems (GNSS)

Signalquelle

Global Positioning System (GPS)

- 24 (30) Satelliten in ~20200 km Höhe
- Seit 1978, 1994 volle Konstellation
- ~1 t schwer, ~5 m Durchmesser
- ~55° Inklination
- Radiowellen, 2 Frequenzen:1575,42 MHz (19 cm)1227,60 MHz (24 cm)
- Positionierung mit mm-Genauigkeit

GLONASS

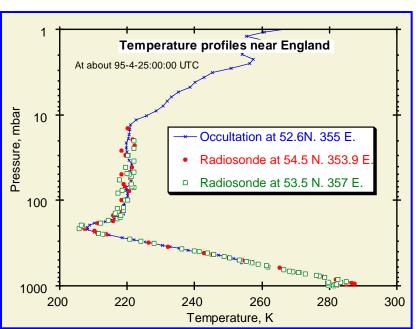
Russland, seit 1982; 1996, 24 (31) Satelliten

GALILEO

ESA, 2 im Orbit, 30 Satelliten, 23200 km

KOMPASS

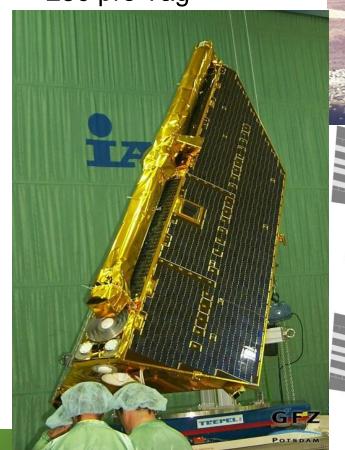
China, 10 (35) Satelliten bis 2015, 22000 km

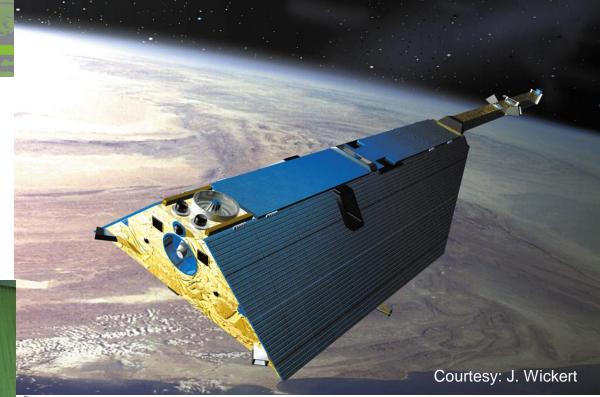

GPS RO Mission - GPS/Met

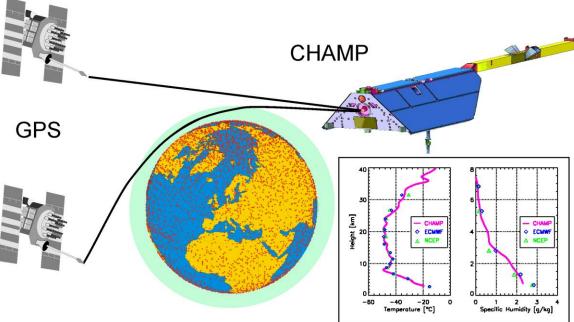
GPS Empfänger auf Satellit in niedriger Erdumlaufbahn

(Low Earth Orbit – LEO)

U.S. GPS/Met Experiment auf MicroLab-I 1995 Messungen 1995 bis 1997 'Proof of Concept' Mission

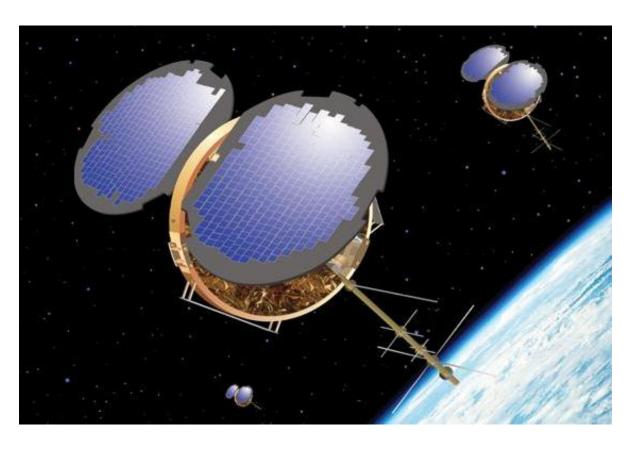





GPS RO mit CHAMP

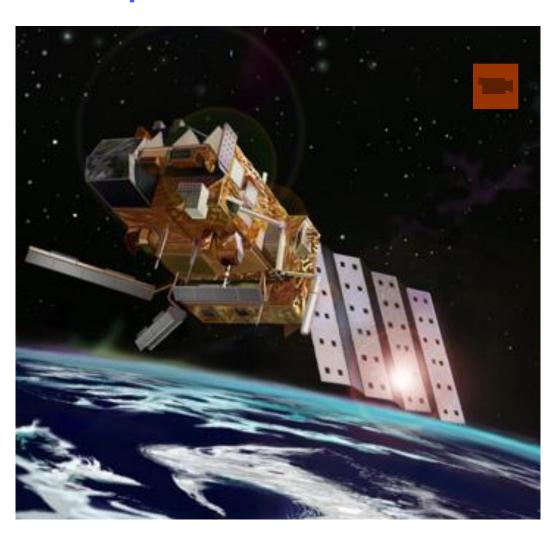
CHAMP

Sep 2001 bis Sep 2008 kontinuierliche GPS RO Messungen ~250 pro Tag



GPS RO Konstellation

Formosat-3/COSMIC



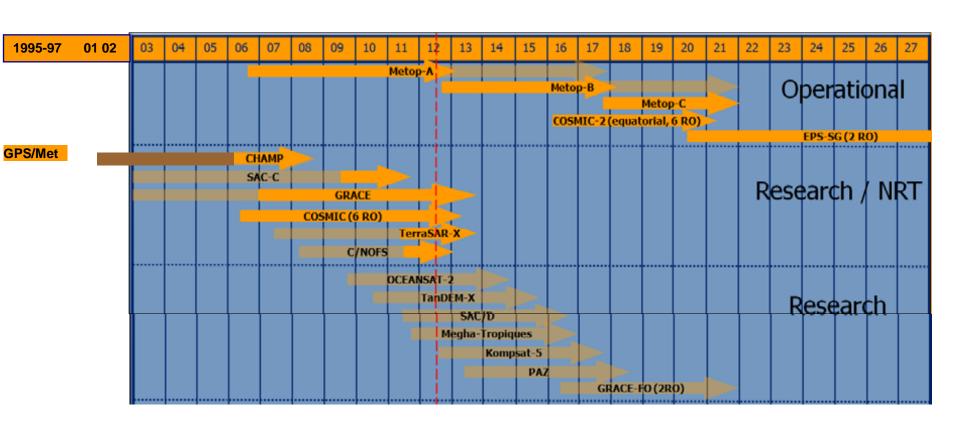
Taiwan/US Mission
6 Satelliten
Start 14. April 2006
~800 km Höhe
~2500 RO Profile/Tag

RO mit MetOp/GRAS

MetOp A

MetOp

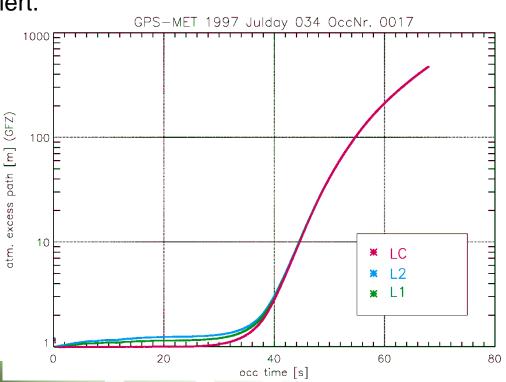
Europäische Mission
Start 19. Oktober, 2006
~800 km Höhe
~600 RO Profile pro Tag
Erster von 2 weiteren
Satelliten (MetOp A, B, C)
im Abstand von 5 Jahren
Start MetOp B im Sep. 2012
Operationell bis 2020


GRAS

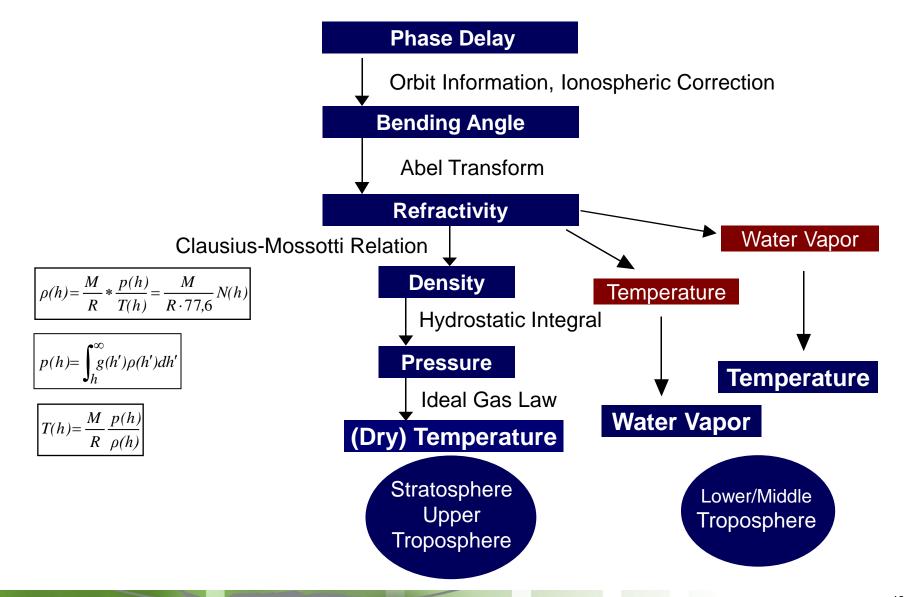
GNSS Receiver for Atmospheric Sounding neuer Empfänger

RO-Missionen: LEO Satelliten

Status und geplante Missionen



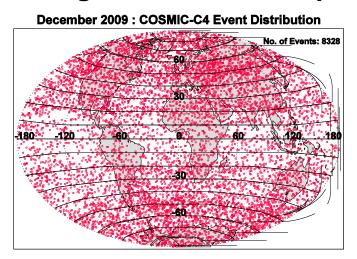
RO Messungen


Messdaten

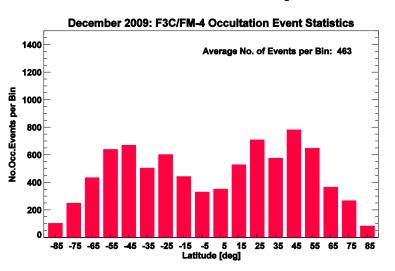
- Phasenwegsverlängerungen (atmospheric excess phase) und Amplituden für beide Frequenzen f1 und f2.
- Phasenweg beinhaltet den geometrischen Weg (Vakuum) und den zusätzlichen Weg aufgrund der Atmosphäre und Ionosphäre (Refraktivitätsfeld).
- Geometrischer Weg wird abgezogen und der Ionosphäreneinfluss durch lineare Kombination von f1 und f2 eliminiert.
- Atmosphärischer Phasenweg
 - ~1 mm Mesopause
 - ~20 cm Stratopause
 - ~20 m Tropopause
 - ~1–2 km Untere Troposphäre

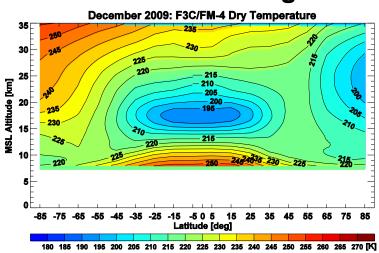
Retrieval - Von der Messung zur Temperatur

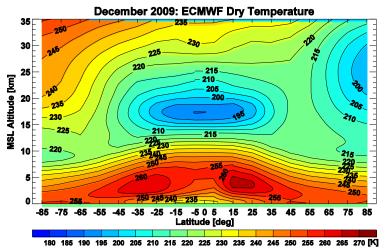
RO Eigenschaften


- Globale Bedeckung
- Allwettertauglichkeit
- Hohe vertikale Auflösung und Genauigkeit (0,5 km bis 1,5 km)
 in oberer Troposphäre und unterer Stratosphäre (UTLS) ~8–30 km
- Fehlercharakterisierung von Datenprodukten
- Langzeitstabilität und Konsistenz
 Messung mittels hochpräziser Atomuhren (SI-Traceability)
- Keine Inter-Satelliten Kalibrierung/Korrekturen nötig
- Genauigkeit für Beobachtung von essentiellen Klimavariablen*
 - Troposphäre 0,05 K pro Jahrzehnt
 - Stratosphäre 0,1 K pro Jahrzehnt

Definition der World Meteorological Organization (WMO): Global Climate Observing System (GCOS) Essential Climate Variables (ECV)

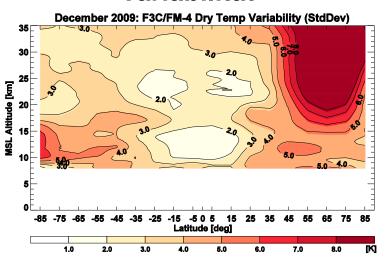

RO Atmosphärenfelder


Verteilung von Okkultationsprofilen

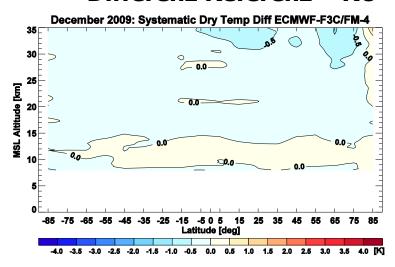

Anzahl von Profilen pro Bin

RO Klimatologie Temperatur

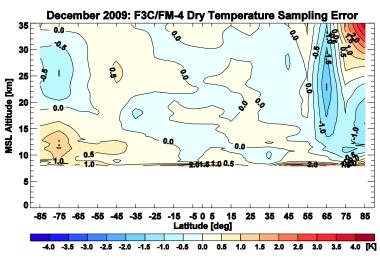
Referenz ECMWF

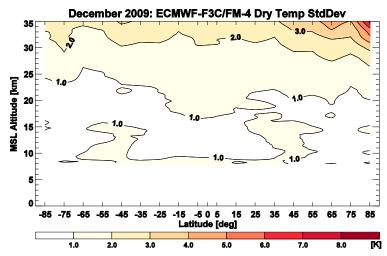


Klimatologie Fehlerbeschreibung



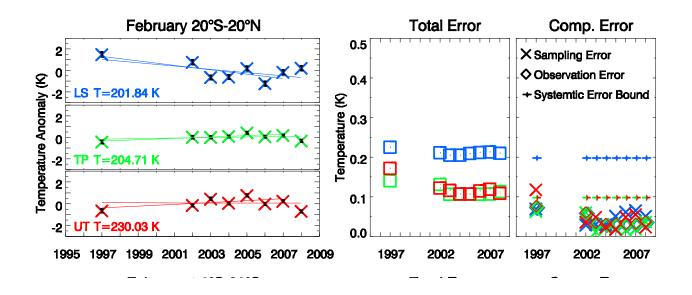
Variabilität

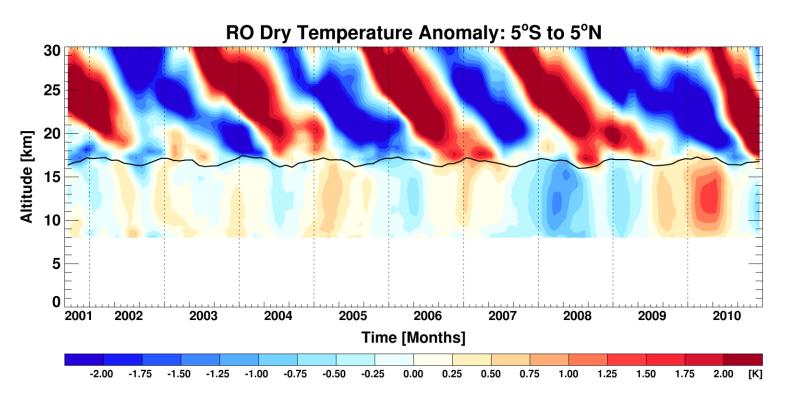

Differenz Referenz – RO



Abtastfehler

Temperatur


StdDev Referenz - RO


Erste Demonstrationsstudie – RO Temperaturtrends

- Tropenregion; Februar 1997, 2002 bis 2008 (updated bis 2010)
- Lineare Regression mit Berücksichtigung der Datenqualität
- Untere Stratosphäre: Signifikanter Trend detektierbar, Februar 1997 bis 2010
- Obere Troposphäre: Kein signifikanter Trend detektierbar, natürliche Variabilität im betrachteten Zeitraum zu hoch

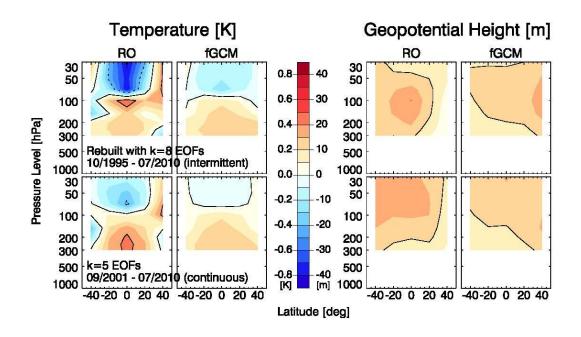
RO Trendstudie - Klimavariabilität

Quasi-Biennale-Oszillation (QBO)

- quasi-periodische Variabilität (~28 Monate) in unterer Stratosphäre der Tropen
- Saisonale Änderungen der "Strahlungsheizung", nach unten fortschreitende Wind/Temperaturanomalien ±0.5 K bis ±6 K, ~16–30km

El Niño Southern Oscillation (ENSO)

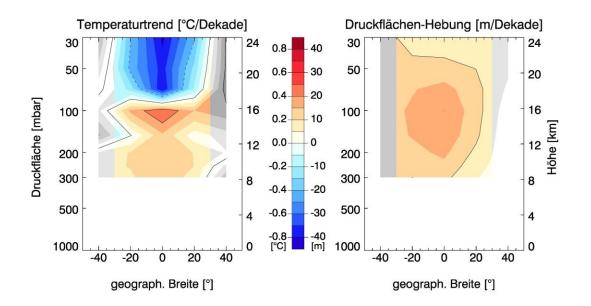
Phänomen mit quasi-Periodizität von 3 bis 7 Jahren in Troposphäre, Änderungen der Meeresoberflächentemperatur im tropischen Pazifik, Kopplung Ozean-Atmosphäre


RO Trendstudie – Optimal Fingerprinting

Optimal Fingerprinting

Methode zur Untersuchung von Trendmustern

- Je nach Ursache haben Trendmuster unterschiedliche Raumverteilung natürliche Variabilität (El Niño)/anthropogen verursachte Trends
- "Herausfiltern" von anthropogen verursachten Trendmustern mit Verwendung/Vergleich von Klimamodeldaten (fGCM)



[Lackner, Steiner, Hegerl, Kirchengast, Atmos climate change detection by RO data using fingerprinting, J. Clim., 2011]

RO Trendstudie – Fingerprinting – Ergebnis

Optimal Fingerprinting

- RO Trendmuster für Temperatur (links) und die geopotentielle Höhe (rechts)
- Signifikantes Klimaänderungssignals für Temperatur (96 %) und geopotentielle Höhe (99 %)
- Eine Hebung der Druckflächen in der oberen Troposphäre reflektiert die Erwärmung und Ausdehnung der Troposphäre
- In der unteren Stratosphäre findet eine Abkühlung statt am stärksten in den Tropen

[Lackner, Steiner, Hegerl, Kirchengast, Atmos climate change detection by RO data using fingerprinting, J. Clim., 2011]

Zusammenfassung

- GPS RO liefert hochqualitative Daten atmosphärischer Variablen
- Eigenschaften umfassen hohe Genauigkeit, hohe vertikale Auflösung Langzeitstabilität und Konsistenz
- GPS RO ist daher optimal geeignet für Klimabeobachtungen
- Erstellung RO basierter Klimatologien
- Detektion eines signifikanten Klimaänderungssignals in der Atmosphäre
- Referenzstandard für Kalibrierung von Daten anderer Beobachtungssystem
- Potential als zukünftiges globales Klimabeobachtungssystem (GCOS)

