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Why comets?



Why comets?



Anatomy of a comet



The comet nucleus



How we learn about comets



Rendezvous with a comet

Spacecraft: 2.8 x 2.1 x 2.0 m
2.2 m diameter communications dish
Two 14-metre solar panels,  total area of 64 m2

100 kg lander
Harpooned to the surface

10 year cruise phase
Currently in hibernation
2 asteroids (2867 Šteins & 21 Lutetia)

UV spectrometer

Radar

Dust spec.

Dust mass/vel

Dust microscopy

Microwave spec.

Camera

Mass spec.

Plasma

Radio science

NIS-NIR spec.



Rosetta and MIDAS

Micro Imaging Dust Analysing System         (12 W, 7900 g, 236 x 216 x 276 mm)

MIDAS

Scientific aims

 3D images of single particles, and agglomerates

 Statistical evaluation of the particles by size, volume and shape

 Variation of particle fluxes on time scales of hours/days

 Magnetic properties of grains



Principles of AFM

 Basic principle:

 A sharp (radius ~10 nm) tip is moved towards to a sample

 Various tip-sample forces act on the tip and cantilever

 The cantilever amplitude responds to these forces

 At a given amplitude change, the Z position is recorded

Parameter In-flight performance

Lateral resolution 3.8 nm

Height resolution 0.16 nm

Height range 8 µm

Scan field
min: 0.97 µm
max: 94 µm

Image resolution
up to 512x512 pixels
14 bit/pixel

Working modes
Contact, Dynamic, 
Single point, Magnetic

Data channels 
Topography, error signal, 
phase shift, cantilever DC, 
AC, X/Y/Z-voltage & position



Overview of the instrument



Overview of the instrument



How small is a nanometre?

 MIDAS has a resolution of 4 nm – but how big is this?

 human hair is ~50 µm (50,000 nm) across

 nanowire is 50 nm across

1.4 mm

0.1 mm = 100 µm

10 µm = 10,000 nm



MIDAS images (1)



MIDAS images (2)



MIDAS images (3)

Calcite grain

5 nm gold spheres



MIDAS images (4)



MIDAS images (5)

Tip imaging, multiple channels



... don't forget these are 3D!



What can we do with the data?

 In situ exploration of the cometary environment by AFM

 first space-borne AFM to be launched (not the first to operate!)

 We collect 3D images of single particles, and aggregates, allowing:

 statistical evaluation of the particles by size, volume and shape

 and derived properties, e.g. fractal dimension

 study of particle fluxes on time scales of hours/days

 These are interesting in themselves, and can address some issues

 how does the size distribution extend to the smallest particles?

 are most particles amorphous or crystalline?

 But the real fun is in applying them to the bigger picture, e.g.

 are most particles aggregates? how small are the primary blocks?

 can we say anything about their mineralogy / formation environment?

 how does gas interact with particles with these shape/size/texture?

 how would collections of such particles behave, e.g. in the mantle?



Sub-µm size distribution

 Data at comet Halley points to a large number of small particles

 even relatively far from the nucleus

 Stardust at Wild-2 sees swarms and bursts

 possibly due to fragmentation of aggregates etc.

 Smallest unit component?

 Stardust → 10s of nm 

 from crater residue



Searching for magnetic minerals

 4 MIDAS needles are coated in cobalt and can be used for MFM

 and should be able to identify and map magnetic domains

 Will 67P contain GEMS-like material? With nanophase inclusions?

 prevalent in anhydrous IDPs, not uniquely identified in Stardust samples

 In situ MFM will be a first!

 implemented but not yet tested

 ground test campaign this year

10.1126/science.1150683
http://www.lpi.usra.edu/meetings/lpsc2004/pdf/1541.pdf



Constraining mantle properties

 Assuming that collected particles in some way represent the mantle

 we can evaluate how collections of such particles behave

 using discrete element modelling, for example

 In µg, inter-particle forces >> weight

 and particle shape, size, roughness contribute to these forces

 Thermal properties should also follow

 since conduction through intimate grain contact is important



Dust + light/gas interaction

 The interaction between dust and gas is not trivial

 the flow regime is complex to calculate

 the drag coefficient is usually guestimated

 in reality drag force is anisotropic, gas molecules are multiply scattered

 With a statistical number of particle shapes, we can model this!

 e.g. DSMC code to model non-Maxwellian distribution of gas

 Polarisation data are well fit by models of porous aggregates

 From MIDAS data we can model light scattering with “real” shapes

 of course we don't measure the full 3D particle (only the upper half)

 we only see the small particles (<~5 µm)

 but often co-expose with COSISCOPE – 13.7 μm/pix

 Images of fluffy aggregate analogues coming soon!



Challenges

 The main challenge is that we only measure topography

 so whilst some mineralogy may be possible with an AFM, we cannot use 
another instrument to confirm etc.

 The flux of small particles is largely unknown

 this affects both our collection and scanning strategy

 fortunately is easy to work with once the environment is known

 early task → constrain the small particle size/flux

 The exact properties of our tips/cantilevers in flight are unknown

 e.g. tip shape, cantilever spring constant, magnetic moment

 fortunately they don't affect basic imaging!

 We have to learn the operating environment

 in particular dealing with temperature drift



Summary

 The MIDAS instrument is healthy

 and the Flight Spare (ESTEC, NL) and Qualification Model (IWF, Graz)

 new needles and samples will be installed this year

 We understand how to get good images from the instrument

 Planning activities are ongoing

 Now is the time to prepare the framework for data analysis!

Thanks!

mark.bentley@oeaw.ac.at
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